
Type refinement in λΠ-calculus modulo

Arnaud Spiwack & Olivier Hermant
arnaud@spiwack.net olivier.hermant@mines-paristech.fr

Mines ParisTech

Dedukti [9] is an experimental language designed to write proof checkers
for logics. It is used to implement independent proof checkers for proof
assistants such as Coq [11] and Isabelle [8] and trace checkers for automated
deduction tools such as Zenon [3] and iprover modulo [4].

The logic underlying Dedukti is called λΠ-modulo [5]: it is an extension of
λΠ, the simplest form of dependently typed λ-calculus (called λP in [2]), with
user-defined rewriting rules for type equality (a.k.a. conversion).

Goals and directions of the internship

Writing a checker in Dedukti can be split in two phases: developing the theory
of the target tool, and writing a translator from the tools syntax to Dedukti’s.
This internship aims at making the former task, which amounts to writing
programs in Dedukti, more tractable.

Dedukti is organised in a way which is reminiscent of proof assistants. It is
split into a small kernel, which is tasked with verifying that a term with type
annotations is well-typed, and a front-end which takes the program as written
by the user and elaborates it into a term which the kernel understands. In
principle, the user-level language may differ significantly from the kernel-level
language. The front-end is, for instance, usually expected to perform some
type inference, whereas it is not the rôle of the kernel. In Dedukti, however,
the front-end stops just short of being the identity: the programmer essentially
uses the kernel language directly.

To remedy this unfortunate situation, Dedukti needs to be outfitted with
a type inference engine. Type inference in dependently typed language fuses
with unification and proof search. The main inspiration for such a type in-
ference engine is the proof-search engine used by Coq [10, Chapter 4]. This
proof-search engine is meant to be a safe and universal abstraction to manip-
ulate terms with holes. The large amount of pre-existing code in Coq meant,
however, that only interactive demonstrations use this abstraction, and specifi-
cally not the type inference or unification mechanisms. We would like to take
advantage of the experimental status of Dedukti and improve on this design by

1

mailto:arnaud@spiwack.net
mailto:olivier.hermant@mines-paristech.fr


actually expressing type inference and unification in terms of the proof-search
abstraction.

This line of research contains both theoretical and practical programming
aspects. The internship can be geared towards on or the other depending on
the student’s preferences.

On the programming side, the proof-search abstraction must be integrated
with Dedukti’s kernel by means of enriching the syntax of terms with so-called
existential variables – also known as unification variables or meta-variables.
This change must be made with as little disruption as possible on the kernel
side. The design should improve on Coq’s by providing two kinds of existential
variables: the regular ones and existential variables standing for contexts. This
new kind of existential variable was introduced by Lengrand [7, Chapter
9] for theoretical reason pertaining to unification and saw other successful
application in the Matita proof assistant [1]. Another aspect to consider is that
Coq’s abstraction was done with the knowledge that unification was handled
somewhere else, and hence features no abstraction for unification problems,
which will have to be developed as part of this work.

On the theoretical side, the λΠ-calculus modulo needs a good theory of
unification expanding on the work of Dowek [6] for pure type systems. Higher-
order unification is undecidable in the case of simply typed λ-calculus. It
is even more so in the very expressive λΠ-calculus modulo. This prevents
us from achieving a decision procedure for unification, but we can devise
a set of deduction rules which, provided an oracle, solves unification. The
addition of rewriting rules in the conversion the λΠ-calculus modulo changes
significantly the shape of normal forms with respect to pure type systems. A
good understanding of these normal form must be achieved, in order to derive
an appropriate set of rules to describe unification strategies in the λΠ-calculus
modulo.

Practical information

The internship will be supervised by Arnaud Spiwack and Olivier Hermant. It
will be hosted by the Deducteam project-team at Inria Paris-Rocquencourt and
the cri at Mines ParisTech.

References

[1] Andrea Asperti, Wilmer Ricciotti, Claudio Sacerdoti Coen, and En-
rico Tassi. A Bi-Directional Refinement Algorithm for the Calculus of
(Co)Inductive Constructions. Logical Methods in Computer Science, 8(1):1–50,
March 2012.

[2] Henk Barendregt. Lambda calculus with types. Handbook of logic in
computer science, 1992.

2



[3] Richard Bonichon, David Delahaye, and Damien Doligez. Zenon: An
extensible automated theorem prover producing checkable proofs. Logic
for Programming, Artificial Intelligence, and Reasoning, 2007.

[4] Guillaume Burel. Embedding Deduction Modulo into a Prover. Computer
Science Logic, 6247, 2010.

[5] Denis Cousineau and Gilles Dowek. Embedding pure type systems in the
lambda-pi-calculus modulo. Typed Lambda Calculi and Applications, 2007.

[6] Gilles Dowek. A Complete Proof Synthesis Method for the Cube of Type
Systems. Journal of Logic and Computation, 3(3):287–315, 1993.

[7] Stéphane Lengrand. Normalisation & equivalence in proof theory & type
theory. PhD thesis, Université Paris VII – Denis Diderot & University of St
Andrews, 2006.

[8] Larry Paulson, Tobias Nipkow, and Makarius Wenzel. Isabelle.

[9] Ronan Saillard. Towards explicit rewrite rules in the λΠ-calculus modulo.
IWIL-10th International Workshop on the Implementation of Logics, pages 1–5,
2013.

[10] Arnaud Spiwack. Verified Computing in Homological Algebra: A Journey
Exploring the Power and Limits of Dependent Type Theory. PhD thesis, École
Polytechnique, 2011.

[11] The Coq development team. The Coq Proof Assistant. http://coq.inria.fr/.

3


